Kiri Model API v1.0.0
Scroll down for code samples, example requests and responses. Select a language for code samples from the tabs above or the mobile navigation menu.
Welcome to our API documentation! Things to note:
Most endpoints can take both single and batched requests. This is so you can save time on round trip times speed up your inference when working with more data. The different
body
andresponse
variants are shown in the respectivesingle
andbatch
schemas.All endpoints require authentication with your API key in the
x-api-key
header.Some endpoints may have multiple
model
options. This is useful to know if your task is in a language other than English.Every account gets
2000
seconds of free inference every month. Seconds are calculated only for compute time when using the endpoints.
If anything is unclear or you find that something is not working as intended, please get in touch!
Base URLs:
Email: Support License: Apache 2.0
Authentication
- API Key (ApiKeyAuth)
- Parameter Name: x-api-key, in: header.
Tasks
Endpoints to call tasks that implement various models for your use cases.
vectorisation
Code samples
curl --request POST \
--url https://api.kiri.ai/vectorisation \
--header 'Accept: application/json' \
--header 'Content-Type: application/json' \
--header 'x-api-key: API_KEY' \
--data '{"text":"iPhone 12 128GB","model":"english"}'
import http.client
conn = http.client.HTTPSConnection("api.kiri.ai")
payload = "{\"text\":\"iPhone 12 128GB\",\"model\":\"english\"}"
headers = {
'Content-Type': "application/json",
'Accept': "application/json",
'x-api-key': "API_KEY"
}
conn.request("POST", "/vectorisation", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
const data = JSON.stringify({
"text": "iPhone 12 128GB",
"model": "english"
});
const xhr = new XMLHttpRequest();
xhr.withCredentials = true;
xhr.addEventListener("readystatechange", function () {
if (this.readyState === this.DONE) {
console.log(this.responseText);
}
});
xhr.open("POST", "https://api.kiri.ai/vectorisation");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.setRequestHeader("Accept", "application/json");
xhr.setRequestHeader("x-api-key", "API_KEY");
xhr.send(data);
POST /vectorisation
vectorises string or list of strings
Body parameter
{
"text": "iPhone 12 128GB",
"model": "english"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | VectorisationBody | true | text or list of text to vectorise |
Example responses
200 Response
{
"vector": [
0.92949192,
0.2312301
]
}
Responses
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | successfully vectorised | VectorisationResponse |
question answering
Code samples
curl --request POST \
--url https://api.kiri.ai/qa \
--header 'Accept: application/json' \
--header 'Content-Type: application/json' \
--header 'x-api-key: API_KEY' \
--data '{"question":"What is the meaning of life?","context":"The meaning of life is 42.","prev_q":["What is not the meaning of life?"],"prev_a":["unknown"],"model":"english"}'
import http.client
conn = http.client.HTTPSConnection("api.kiri.ai")
payload = "{\"question\":\"What is the meaning of life?\",\"context\":\"The meaning of life is 42.\",\"prev_q\":[\"What is not the meaning of life?\"],\"prev_a\":[\"unknown\"],\"model\":\"english\"}"
headers = {
'Content-Type': "application/json",
'Accept': "application/json",
'x-api-key': "API_KEY"
}
conn.request("POST", "/qa", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
const data = JSON.stringify({
"question": "What is the meaning of life?",
"context": "The meaning of life is 42.",
"prev_q": [
"What is not the meaning of life?"
],
"prev_a": [
"unknown"
],
"model": "english"
});
const xhr = new XMLHttpRequest();
xhr.withCredentials = true;
xhr.addEventListener("readystatechange", function () {
if (this.readyState === this.DONE) {
console.log(this.responseText);
}
});
xhr.open("POST", "https://api.kiri.ai/qa");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.setRequestHeader("Accept", "application/json");
xhr.setRequestHeader("x-api-key", "API_KEY");
xhr.send(data);
POST /qa
Performs QA on question, context, previous questions and previous answers. Answers "unknown" if the question cannot be answered.
Body parameter
{
"question": "What is the meaning of life?",
"context": "The meaning of life is 42.",
"prev_q": [
"What is not the meaning of life?"
],
"prev_a": [
"unknown"
],
"model": "english"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | QABody | true | none |
Example responses
200 Response
{
"answer": "42"
}
Responses
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | successful QA | QAResponse |
zero shot classification
Code samples
curl --request POST \
--url https://api.kiri.ai/classification \
--header 'Accept: application/json' \
--header 'Content-Type: application/json' \
--header 'x-api-key: API_KEY' \
--data '{"text":"I am really mad because my product broke.","labels":["product issue","furniture","space"],"model":"english"}'
import http.client
conn = http.client.HTTPSConnection("api.kiri.ai")
payload = "{\"text\":\"I am really mad because my product broke.\",\"labels\":[\"product issue\",\"furniture\",\"space\"],\"model\":\"english\"}"
headers = {
'Content-Type': "application/json",
'Accept': "application/json",
'x-api-key': "API_KEY"
}
conn.request("POST", "/classification", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
const data = JSON.stringify({
"text": "I am really mad because my product broke.",
"labels": [
"product issue",
"furniture",
"space"
],
"model": "english"
});
const xhr = new XMLHttpRequest();
xhr.withCredentials = true;
xhr.addEventListener("readystatechange", function () {
if (this.readyState === this.DONE) {
console.log(this.responseText);
}
});
xhr.open("POST", "https://api.kiri.ai/classification");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.setRequestHeader("Accept", "application/json");
xhr.setRequestHeader("x-api-key", "API_KEY");
xhr.send(data);
POST /classification
Performs zero shot classification on provided text and labels.
Body parameter
{
"text": "I am really mad because my product broke.",
"labels": [
"product issue",
"furniture",
"space"
],
"model": "english"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | ClassificationBody | true | none |
Example responses
200 Response
{
"probabilities": {
"product issue": 0.98,
"furniture": 0.1,
"space": 0.05
}
}
Responses
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | successful classification | ClassificationResponse |
zero shot image classification
Code samples
curl --request POST \
--url https://api.kiri.ai/image-classification \
--header 'Accept: application/json' \
--header 'Content-Type: application/json' \
--header 'x-api-key: API_KEY' \
--data '{"image":"","labels":["healthy brain","brain with tumor"],"model":"english"}'
import http.client
conn = http.client.HTTPSConnection("api.kiri.ai")
payload = "{\"image\":\"\",\"labels\":[\"healthy brain\",\"brain with tumor\"],\"model\":\"english\"}"
headers = {
'Content-Type': "application/json",
'Accept': "application/json",
'x-api-key': "API_KEY"
}
conn.request("POST", "/image-classification", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
const data = JSON.stringify({
"image": "",
"labels": [
"healthy brain",
"brain with tumor"
],
"model": "english"
});
const xhr = new XMLHttpRequest();
xhr.withCredentials = true;
xhr.addEventListener("readystatechange", function () {
if (this.readyState === this.DONE) {
console.log(this.responseText);
}
});
xhr.open("POST", "https://api.kiri.ai/image-classification");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.setRequestHeader("Accept", "application/json");
xhr.setRequestHeader("x-api-key", "API_KEY");
xhr.send(data);
POST /image-classification
Performs zero shot image classification on provided base64 encoded image and labels. The probabilities predicted for the labels will always sum to 100%.
Body parameter
{
"image": "",
"labels": [
"healthy brain",
"brain with tumor"
],
"model": "english"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | ImageClassificationBody | true | none |
Example responses
200 Response
{
"probabilities": {
"brain with tumor": 0.98,
"healthy brain": 0.02
}
}
Responses
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | successful classification | ImageClassificationResponse |
text generation
Code samples
curl --request POST \
--url https://api.kiri.ai/generation \
--header 'Accept: application/json' \
--header 'Content-Type: application/json' \
--header 'x-api-key: API_KEY' \
--data '{"text":"Geralt knew the signs, the monster was a","min_length":10,"max_length":20,"temperature":1,"top_k":0,"top_p":1,"repetition_penalty":1,"length_penalty":1,"num_beams":1,"num_generations":1,"model":"gpt2-large"}'
import http.client
conn = http.client.HTTPSConnection("api.kiri.ai")
payload = "{\"text\":\"Geralt knew the signs, the monster was a\",\"min_length\":10,\"max_length\":20,\"temperature\":1,\"top_k\":0,\"top_p\":1,\"repetition_penalty\":1,\"length_penalty\":1,\"num_beams\":1,\"num_generations\":1,\"model\":\"gpt2-large\"}"
headers = {
'Content-Type': "application/json",
'Accept': "application/json",
'x-api-key': "API_KEY"
}
conn.request("POST", "/generation", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
const data = JSON.stringify({
"text": "Geralt knew the signs, the monster was a",
"min_length": 10,
"max_length": 20,
"temperature": 1,
"top_k": 0,
"top_p": 1,
"repetition_penalty": 1,
"length_penalty": 1,
"num_beams": 1,
"num_generations": 1,
"model": "gpt2-large"
});
const xhr = new XMLHttpRequest();
xhr.withCredentials = true;
xhr.addEventListener("readystatechange", function () {
if (this.readyState === this.DONE) {
console.log(this.responseText);
}
});
xhr.open("POST", "https://api.kiri.ai/generation");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.setRequestHeader("Accept", "application/json");
xhr.setRequestHeader("x-api-key", "API_KEY");
xhr.send(data);
POST /generation
Performs generation on the provided text with the specified parameters
Body parameter
{
"text": "Geralt knew the signs, the monster was a",
"min_length": 10,
"max_length": 20,
"temperature": 1,
"top_k": 0,
"top_p": 1,
"repetition_penalty": 1,
"length_penalty": 1,
"num_beams": 1,
"num_generations": 1,
"model": "gpt2-large"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | GenerationBody | true | none |
Example responses
200 Response
{
"output": "Geralt knew the signs, the monster was a vampire that day; after the siege her companions"
}
Responses
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | successful generation | GenerationResponse |
text summarisation
Code samples
curl --request POST \
--url https://api.kiri.ai/summarisation \
--header 'Accept: application/json' \
--header 'Content-Type: application/json' \
--header 'x-api-key: API_KEY' \
--data '{"text":"Some long text to summarise","model":"english"}'
import http.client
conn = http.client.HTTPSConnection("api.kiri.ai")
payload = "{\"text\":\"Some long text to summarise\",\"model\":\"english\"}"
headers = {
'Content-Type': "application/json",
'Accept': "application/json",
'x-api-key': "API_KEY"
}
conn.request("POST", "/summarisation", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
const data = JSON.stringify({
"text": "Some long text to summarise",
"model": "english"
});
const xhr = new XMLHttpRequest();
xhr.withCredentials = true;
xhr.addEventListener("readystatechange", function () {
if (this.readyState === this.DONE) {
console.log(this.responseText);
}
});
xhr.open("POST", "https://api.kiri.ai/summarisation");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.setRequestHeader("Accept", "application/json");
xhr.setRequestHeader("x-api-key", "API_KEY");
xhr.send(data);
POST /summarisation
Performs summarisation on the provided text
Body parameter
{
"text": "Some long text to summarise",
"model": "english"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | SummarisationBody | true | none |
Example responses
200 Response
{
"output": "Summary of long text"
}
Responses
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | successful summarisation | SummarisationResponse |
emotion detection
Code samples
curl --request POST \
--url https://api.kiri.ai/emotion \
--header 'Accept: application/json' \
--header 'Content-Type: application/json' \
--header 'x-api-key: API_KEY' \
--data '{"text":"I hope this works","model":"english"}'
import http.client
conn = http.client.HTTPSConnection("api.kiri.ai")
payload = "{\"text\":\"I hope this works\",\"model\":\"english\"}"
headers = {
'Content-Type': "application/json",
'Accept': "application/json",
'x-api-key': "API_KEY"
}
conn.request("POST", "/emotion", payload, headers)
res = conn.getresponse()
data = res.read()
print(data.decode("utf-8"))
const data = JSON.stringify({
"text": "I hope this works",
"model": "english"
});
const xhr = new XMLHttpRequest();
xhr.withCredentials = true;
xhr.addEventListener("readystatechange", function () {
if (this.readyState === this.DONE) {
console.log(this.responseText);
}
});
xhr.open("POST", "https://api.kiri.ai/emotion");
xhr.setRequestHeader("Content-Type", "application/json");
xhr.setRequestHeader("Accept", "application/json");
xhr.setRequestHeader("x-api-key", "API_KEY");
xhr.send(data);
POST /emotion
Performs emotion detection on the provided text. The response is a string of comma separated emotions. The emotions are from: neutral, admiration, approval, annoyance, gratitude, disapproval, amusement, curiosity, love, optimism, disappointment, joy, realization, anger, sadness, confusion, caring, excitement, surprise, disgust, desire, fear, remorse, embarrassment, nervousness, pride, relief, grief.
Body parameter
{
"text": "I hope this works",
"model": "english"
}
Parameters
Name | In | Type | Required | Description |
---|---|---|---|---|
body | body | EmotionBody | true | none |
Example responses
200 Response
{
"output": "optimism"
}
Responses
Status | Meaning | Description | Schema |
---|---|---|---|
200 | OK | successful emotion detection | EmotionResponse |
Schemas
VectorisationBody
{
"text": "iPhone 12 128GB",
"model": "english"
}
Vectorisation body
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Vectorisation body | any | false | none | Vectorisation body variants for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | VectorisationSingle | false | none | Single item vectorisation |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | VectorisationBatch | false | none | Batch vectorisation |
VectorisationSingle
{
"text": "iPhone 12 128GB",
"model": "english"
}
Single item vectorisation
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
text | string | true | none | none |
model | string | false | none | Model to use: * english - English optimised vectorisation* multilingual - Multilingual vectorisation in 50+ languages: ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, fr-ca, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, pt, pt-br, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh-cn, zh-tw. |
Enumerated Values
Property | Value |
---|---|
model | english |
model | multilingual |
VectorisationBatch
{
"text": [
"iPhone 12 128GB",
"RTX 3090"
],
"model": "english"
}
Batch vectorisation
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
text | [string] | true | none | none |
model | string | false | none | Model to use: * english - English optimised vectorisation* multilingual - Multilingual vectorisation in 50+ languages: ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, fr-ca, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, pt, pt-br, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh-cn, zh-tw. |
Enumerated Values
Property | Value |
---|---|
model | english |
model | multilingual |
VectorisationResponse
{
"vector": [
0.92949192,
0.2312301
]
}
Vectorisation response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Vectorisation response | any | false | none | Vectorisation responses for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | VectorisationSingleResponse | false | none | none |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | VectorisationBatchResponse | false | none | none |
VectorisationSingleResponse
{
"vector": [
0.92949192,
0.2312301
]
}
Single item vectorisation response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
vector | [number] | false | none | none |
VectorisationBatchResponse
{
"vectorList": [
[
0.92949192,
0.2312301
],
[
0.82939192,
0.5312701
]
]
}
Batch vectorisation response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
vectorList | [array] | false | none | none |
QABody
{
"question": "What is the meaning of life?",
"context": "The meaning of life is 42.",
"prev_q": [
"What is not the meaning of life?"
],
"prev_a": [
"unknown"
],
"model": "english"
}
QA body
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
QA body | any | false | none | QA body variants for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | QASingle | false | none | Single item QA |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | QABatch | false | none | Batch QA |
QASingle
{
"question": "What is the meaning of life?",
"context": "The meaning of life is 42.",
"prev_q": [
"What is not the meaning of life?"
],
"prev_a": [
"unknown"
],
"model": "english"
}
Single item QA
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
question | string | true | none | question to answer |
context | string | true | none | context to answer based on |
prev_q | [string] | false | none | none |
prev_a | [string] | false | none | none |
model | string | false | none | Model to use: * english - English only QA |
Enumerated Values
Property | Value |
---|---|
model | english |
QABatch
{
"question": [
"What is the meaning of life?",
"Where does Sally live?"
],
"context": [
"The meaning of life is 42.",
"Sally lives in London"
],
"prev_q": [
[
"What is not the meaning of life?"
],
[
"Where did Sally go to school?"
]
],
"prev_a": [
[
"unknown"
],
[
"unknown"
]
],
"model": "english"
}
Batch QA
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
question | [string] | true | none | list of questions to answer |
context | [string] | true | none | context to answer based on |
prev_q | [array] | false | none | none |
prev_a | [array] | false | none | none |
model | string | false | none | Model to use: * english - English only QA |
Enumerated Values
Property | Value |
---|---|
model | english |
QAResponse
{
"answer": "42"
}
QA response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
QA response | any | false | none | QA responses for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | QASingleResponse | false | none | none |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | QABatchResponse | false | none | none |
QASingleResponse
{
"answer": "42"
}
Single item QA response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
answer | string | false | none | none |
QABatchResponse
{
"answer": [
"42",
"London"
]
}
Batch QA response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
answer | [string] | false | none | none |
ClassificationBody
{
"text": "I am really mad because my product broke.",
"labels": [
"product issue",
"furniture",
"space"
],
"model": "english"
}
Classification body
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Classification body | any | false | none | Classification body variants for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | ClassificationSingle | false | none | Single item Classification |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | ClassificationBatch | false | none | Batch Classification |
ClassificationSingle
{
"text": "I am really mad because my product broke.",
"labels": [
"product issue",
"furniture",
"space"
],
"model": "english"
}
Single item Classification
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
text | string | true | none | text to classify |
labels | [string] | true | none | labels to predict probabilities for |
model | string | false | none | Model to use: * english - English only classification* multilingual - Multilingual classification in 100+ languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish. |
Enumerated Values
Property | Value |
---|---|
model | english |
model | multilingual |
ClassificationBatch
{
"text": [
"I am really mad because my product broke.",
"I would like to collaborate with you on social media"
],
"labels": [
[
"product issue",
"furniture",
"space"
],
[
"product issue",
"furniture",
"sales"
]
],
"model": "english"
}
Batch Classification
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
text | [string] | true | none | list text to classify |
labels | [array] | true | none | list of list of labels to predict probabilities for |
model | string | false | none | Model to use: * english - English only classification* multilingual - Multilingual classification in 100+ languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish. |
Enumerated Values
Property | Value |
---|---|
model | english |
model | multilingual |
ClassificationResponse
{
"probabilities": {
"product issue": 0.98,
"furniture": 0.1,
"space": 0.05
}
}
Classification response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Classification response | any | false | none | Classification responses for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | ClassificationSingleResponse | false | none | none |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | ClassificationBatchResponse | false | none | none |
ClassificationSingleResponse
{
"probabilities": {
"product issue": 0.98,
"furniture": 0.1,
"space": 0.05
}
}
Single item classification response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
probabilities | object | false | none | dictionary where the keys are your labels and values are probabilities |
ClassificationBatchResponse
{
"probabilities": [
{
"product issue": 0.98,
"furniture": 0.1,
"space": 0.05
},
{
"product issue": 0.2,
"furniture": 0.03,
"sales": 0.87
}
]
}
Batch classification response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
probabilities | [object] | false | none | list of dictionaries where the keys are your labels and values are probabilities |
ImageClassificationBody
{
"image": "",
"labels": [
"healthy brain",
"brain with tumor"
],
"model": "english"
}
Image classification body
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Image classification body | ImageClassificationSingle | false | none | Image classification body |
ImageClassificationSingle
{
"image": "",
"labels": [
"healthy brain",
"brain with tumor"
],
"model": "english"
}
Single item image classification
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
image | string | true | none | base64 encoded image |
labels | [string] | true | none | labels to predict probabilities for |
model | string | false | none | Model to use: * english - Classification with English labels |
Enumerated Values
Property | Value |
---|---|
model | english |
ImageClassificationResponse
{
"probabilities": {
"brain with tumor": 0.98,
"healthy brain": 0.02
}
}
Image classification response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Image classification response | ImageClassificationSingleResponse | false | none | Image classification response |
ImageClassificationSingleResponse
{
"probabilities": {
"brain with tumor": 0.98,
"healthy brain": 0.02
}
}
Single item image classification response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
probabilities | object | false | none | dictionary where the keys are your labels and values are probabilities. Probabilities always sum to 100%. |
GenerationBody
{
"text": "Geralt knew the signs, the monster was a",
"min_length": 10,
"max_length": 20,
"temperature": 1,
"top_k": 0,
"top_p": 1,
"repetition_penalty": 1,
"length_penalty": 1,
"num_beams": 1,
"num_generations": 1,
"model": "gpt2-large"
}
Generation body
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Generation body | any | false | none | Generation body variants for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | GenerationSingle | false | none | Single item generation |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | GenerationBatch | false | none | Batch generation |
GenerationSingle
{
"text": "Geralt knew the signs, the monster was a",
"min_length": 10,
"max_length": 20,
"temperature": 1,
"top_k": 0,
"top_p": 1,
"repetition_penalty": 1,
"length_penalty": 1,
"num_beams": 1,
"num_generations": 1,
"model": "gpt2-large"
}
Single item generation
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
text | string | true | none | text to generate from |
min_length | integer | false | none | minimum number of tokens to generate |
max_length | integer | false | none | maximum number of tokens to generate |
temperature | number | false | none | value that alters softmax probabilities. 0.0 is deterministic. As the temperature gets higher, the generated tokens get more random. |
top_k | integer | false | none | sampling strategy in which probabilities are redistributed among top k most-likely tokens. 0 is a special value where all tokens are considered. |
top_p | number | false | none | Sampling strategy in which probabilities are distributed among set of words with combined probability greater than p. |
repetition_penalty | number | false | none | Penalty to be applied to tokens present in the text and tokens already generated in the sequence. Values higher than 1.0 penalise repetition, while lower than 1.0 encourage it. |
length_penalty | number | false | none | Penalty applied to overall sequence length. Set to greater than 1.0 for longer sequences or smaller than 1.0 for shorter ones. |
num_beams | integer | false | none | Number of beams to be used in beam search. (1 is no beam search) |
num_generations | integer | false | none | Number of times to do generation for input. |
model | string | false | none | Model to use: * gpt2-large - An optimised large version of gpt2.* t5-base-qa-summary-emotion - The T5 base model trained for question answering, summarisation and emotion detection. |
Enumerated Values
Property | Value |
---|---|
model | gpt2-large |
model | t5-base-qa-summary-emotion |
GenerationBatch
{
"text": [
"Geralt knew the signs, the monster was a",
"c: Elon Musk is an entrepreneur born in 1971. q: Who is Elon Musk? a: an entrepreneur q: When was he born? a: "
],
"min_length": 10,
"max_length": 20,
"temperature": 1,
"top_k": 0,
"top_p": 1,
"repetition_penalty": 1,
"length_penalty": 1,
"num_beams": 1,
"num_generations": 1,
"model": "gpt2-large"
}
Batch generation
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
text | [string] | true | none | text to generate from |
min_length | integer | false | none | minimum number of tokens to generate |
max_length | integer | false | none | maximum number of tokens to generate |
temperature | number | false | none | value that alters softmax probabilities. 0.0 is deterministic. As the temperature gets higher, the generated tokens get more random. |
top_k | integer | false | none | sampling strategy in which probabilities are redistributed among top k most-likely tokens. 0 is a special value where all tokens are considered. |
top_p | number | false | none | Sampling strategy in which probabilities are distributed among set of words with combined probability greater than p. |
repetition_penalty | number | false | none | Penalty to be applied to tokens present in the text and tokens already generated in the sequence. Values higher than 1.0 penalise repetition, while lower than 1.0 encourage it. |
length_penalty | number | false | none | Penalty applied to overall sequence length. Set to greater than 1.0 for longer sequences or smaller than 1.0 for shorter ones. |
num_beams | integer | false | none | Number of beams to be used in beam search. (1 is no beam search) |
num_generations | integer | false | none | Number of times to do generation for input. |
model | string | false | none | Model to use: * gpt2-large - An optimised large version of gpt2.* t5-base-qa-summary-emotion - The T5 base model trained for question answering, summarisation and emotion detection. |
Enumerated Values
Property | Value |
---|---|
model | gpt2-large |
model | t5-base-qa-summary-emotion |
GenerationResponse
{
"output": "Geralt knew the signs, the monster was a vampire that day; after the siege her companions"
}
Generation response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Generation response | any | false | none | Generation responses for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | GenerationSingleResponse | false | none | none |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | GenerationBatchResponse | false | none | none |
GenerationSingleResponse
{
"output": "Geralt knew the signs, the monster was a vampire that day; after the siege her companions"
}
Single item generation response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
output | string | false | none | none |
GenerationBatchResponse
{
"output": [
"Geralt knew the signs, the monster was a vampire that day; after the siege her companions",
"1971"
]
}
Batch generation response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
output | [string] | false | none | none |
SummarisationBody
{
"text": "Some long text to summarise",
"model": "english"
}
Summarisation body
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Summarisation body | any | false | none | Summarisation body variants for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | SummarisationSingle | false | none | Single item summarisation |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | SummarisationBatch | false | none | Batch summarisation |
SummarisationSingle
{
"text": "Some long text to summarise",
"model": "english"
}
Single item summarisation
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
text | string | true | none | none |
model | string | false | none | Model to use: * english - English text summarisation |
Enumerated Values
Property | Value |
---|---|
model | english |
SummarisationBatch
{
"text": [
"Some long text to summarise",
"Some more long text that needs summarising"
],
"model": "english"
}
Batch summarisation
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
text | [string] | true | none | none |
model | string | false | none | Model to use: * english - English text summarisation |
Enumerated Values
Property | Value |
---|---|
model | english |
SummarisationResponse
{
"output": "Summary of long text"
}
Summarisation response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Summarisation response | any | false | none | Summarisation responses for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | SummarisationSingleResponse | false | none | none |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | SummarisationBatchResponse | false | none | none |
SummarisationSingleResponse
{
"output": "Summary of long text"
}
Single item summarisation response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
output | string | false | none | none |
SummarisationBatchResponse
{
"output": [
"Summary of long text",
"Summary of some more long text"
]
}
Batch summarisation response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
output | [string] | false | none | none |
EmotionBody
{
"text": "I hope this works",
"model": "english"
}
Emotion body
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Emotion body | any | false | none | Emotion body variants for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | EmotionSingle | false | none | Single item emotion detection |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | EmotionBatch | false | none | Batch emotion detection |
EmotionSingle
{
"text": "I hope this works",
"model": "english"
}
Single item emotion detection
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
text | string | true | none | none |
model | string | false | none | Model to use: * english - English text emotion detection |
Enumerated Values
Property | Value |
---|---|
model | english |
EmotionBatch
{
"text": [
"I hope this works",
"I'll be most upset if things go wrong"
],
"model": "english"
}
Batch emotion detection
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
text | [string] | true | none | none |
model | string | false | none | Model to use: * english - English text emotion detection |
Enumerated Values
Property | Value |
---|---|
model | english |
EmotionResponse
{
"output": "optimism"
}
Emotion detection response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
Emotion detection response | any | false | none | Emotion detection responses for single and batch requests |
oneOf
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | EmotionSingleResponse | false | none | none |
xor
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
anonymous | EmotionBatchResponse | false | none | none |
EmotionSingleResponse
{
"output": "optimism"
}
Single item emotion detection response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
output | string | false | none | none |
EmotionBatchResponse
{
"output": [
"optimism",
"disappointment, sadness"
]
}
Batch emotion detection response
Properties
Name | Type | Required | Restrictions | Description |
---|---|---|---|---|
output | [string] | false | none | none |